Pat 甲级 训练真题集 1021!

1021. Deepest Root (25)

A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes’ numbers.

Output Specification:

For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print “Error: K components” where K is the number of connected components in the graph.

Sample Input 1:

5
1 2
1 3
1 4
2 5

Sample Output 1:

3
4
5

Sample Input 2:

5
1 3
1 4
2 5
3 4

Sample Output 2:

Error: 2 components

代码如下:

有一个段错误。。。

#include<iostream>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAX 10000
int map[MAX][MAX];
int N;
int deep=1,maxdeep=0;
int collection[MAX];
int visited[MAX];
class node{
public:
	int n;
	int deep;
	bool operator < (const node &n)const{
		return deep > n.deep;
	}
};

void dfs(int start){
	collection[start]=1;
	for(int i=1;i<=N;++i){
		if(map[start][i]==1&&!collection[i]){
			deep++;
			if(deep>maxdeep) {
				maxdeep=deep;
			}
			dfs(i);
			deep--;
		}
	}
}
void dfs1(int start){
	visited[start]=1;
	for(int i=1;i<=N;++i){
		if(map[start][i]==1&&!visited[i]){
			dfs1(i);
		}
	}
}


int main(){

	cin>>N;
	int a,b;
	for(int i=0;i<N-1;++i){
		cin>>a>>b;
		map[a][b]=1;
		map[b][a]=1;
	}
	int cnt=0;
	memset(visited,0,N+1);
	for(int i=1;i<=N;++i){
		if(visited[i]!=1){
			dfs1(i);
			cnt++;
		}
	}
	if(cnt>=2){
		cout<<"Error: "<<cnt<<" components";
		return 0;
	}
	vector<node> vec;

	for(int i=1;i<=N;++i){
			memset(collection,0,sizeof(collection));
			dfs(i);
			node n;
			n.n=i;
			n.deep=maxdeep;		
			vec.push_back(n);
			deep=1;
			maxdeep=0;	
		
	}
	sort(vec.begin(),vec.end());
	cout<<vec[0].n<<endl;
	for(int i=1;i<vec.size()-1;++i){
		if(vec[i-1].deep>vec[i].deep)
			break;
		else{
			cout<<vec[i].n<<endl;
		}
	}
	return 0;
}

打赏一个呗

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦